当前位置:魔方格数学角平分线的..>已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD..
题文
已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.
魔方格
题型:解答题难度:中档来源:不详
答案
证明:在△ABD和△CBD中,AB=BC(已知),
∠ABD=∠CBD(角平分线的性质),
BD=BD(公共边),
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB(全等三角形的对应角相等);
∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°;
又∵PD=PD(公共边),
∴△PMD≌△PND(AAS),
∴PM=PN(全等三角形的对应边相等).
据魔方格专家权威分析,试题“已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD..”主要考查你对  角平分线的性质  等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问魔方格学习社区
角平分线的性质
考点名称:角平分线的性质
  • 角平分线:
    三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。

  • 角平方线定理:
    ①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
    ②角平分线能得到相同的两个角,都等于该角的一半。
    ③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    ④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
    逆定理:
    在角的内部,到角两边的距离相等的点在角平分线上。

  • 角平分线作法:
    在角AOB中,画角平分线

    方法一:
    1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
    2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
    3.作射线OP。
    则射线OP为角AOB的角平分线。
    当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。

    方法二:
    1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;
    2.连接AN与BM,他们相交于点P;
    3.作射线OP。
    则射线OP为角AOB的角平分线。
以上内容为魔方格学习社区(www.mofangge.com)原创内容,未经允许不得转载!